Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Med Virol ; 96(3): e29551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506236

RESUMEN

Respiratory Syncytial Virus (RSV) is an important cause of respiratory infection in humans. Severe cases are common in children ≤2 years old, immunocompromised individuals, and the elderly. In 2020, RSV infection reduced in Rio Grande do Sul (RS), southern Brazil; however, in 2021 resurgence of RSV was observed. This study analyzed epidemiological and genetic features of RSV infection cases reported in 2021 in RS. Nasopharyngeal samples collected from individuals with respiratory infection negative for SARS-CoV-2, Influenza A and B viruses were assessed for the presence of RSV by real time RT-qPCR. RSV-A and RSV-B genomic sequencing and phylogenetic reconstructions were performed for genotyping and clade characterization. Among 21,035 respiratory samples analyzed, 2,947 were positive for RSV, 947 of which were hospitalized patients. Positive cases were detected year-round, with the highest number in June-July (winter). Children <1 year comprised 56.28% (n = 533) of the hospitalized patients infected with RSV, whereas 14.46% (n = 137) were individuals >60 years. Of a total of 361 deaths, 14.68% (n = 53) were RSV positive, mostly patients >60 years old (73.58%, n = 39). Chronic kidney disease, cardiopathy, Down syndrome and neurological diseases were associated with RSV infection. RSV-A was identified in 58.5% (n = 117/200) of the patients, and RSV-B in 41.5% (n = 83/200). Of 95 RSV genomes recovered from SARI cases, 66 were RSV-A GA.2.3.5 genotype, while 29 were RSV-B GB.5.0.5a genotype. This study provides epidemiological and molecular data on RSV cases in RS during the COVID-19 pandemic and highlights that investigation of different respiratory viruses is essential for decision-making and disease prevention and control measures.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Lactante , Anciano , Preescolar , Persona de Mediana Edad , Virus Sincitial Respiratorio Humano/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Filogenia , Brasil/epidemiología , Pandemias , COVID-19/epidemiología , SARS-CoV-2/genética , Gripe Humana/epidemiología
2.
Nat Commun ; 15(1): 1837, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418815

RESUMEN

Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , América Latina/epidemiología , Pandemias , Filogenia , COVID-19/epidemiología , Región del Caribe/epidemiología
3.
Braz J Infect Dis ; 28(1): 103706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38081327

RESUMEN

This study compares the effects of virus-cell interactions among SARS-CoV-2 variants of concern (VOCs) isolated in Brazil in 2021, hypothesizing a correlation between cellular alterations and mortality and between viral load and transmissibility. For this purpose, reference isolates of Alpha, Gamma, Zeta, and Delta variants were inoculated into monolayers of Vero-E6 cells. Viral RNA was quantified in cell supernatants by RT‒PCR, and infected cells were analyzed by Transmission Electron Microscopy (TEM) for qualitative and quantitative evaluation of cellular changes 24, 48, and 72 hours postinfection (hpi). Ultrastructural analyses showed that all variants of SARS-CoV-2 altered the structure and function of mitochondria, nucleus, and rough endoplasmic reticulum of cells. Monolayers infected with the Delta variant showed the highest number of modified cells and the greatest statistically significant differences compared to those of other variants. Viral particles were observed in the cytosol and the cell membrane in 100 % of the cells at 48 hpi. Alpha showed the highest mean particle diameter (79 nm), and Gamma and Delta were the smallest (75 nm). Alpha and Gamma had the highest particle frequency per field at 48 hpi, while the same was observed for Zeta and Delta at 72 hpi and 24 hpi, respectively. The cycle threshold of viral RNA varied among the target protein, VOC, and time of infection. The findings presented here demonstrate that all four VOCs evaluated caused ultrastructural changes in Vero-E6 cells, which were more prominent when infection occured with the Delta variant.


Asunto(s)
COVID-19 , Citología , Humanos , SARS-CoV-2 , ARN Viral/genética
4.
Braz. j. infect. dis ; 28(1): 103706, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1550139

RESUMEN

Abstract This study compares the effects of virus-cell interactions among SARS-CoV-2 variants of concern (VOCs) isolated in Brazil in 2021, hypothesizing a correlation between cellular alterations and mortality and between viral load and transmissibility. For this purpose, reference isolates of Alpha, Gamma, Zeta, and Delta variants were inoculated into monolayers of Vero-E6 cells. Viral RNA was quantified in cell supernatants by RT‒PCR, and infected cells were analyzed by Transmission Electron Microscopy (TEM) for qualitative and quantitative evaluation of cellular changes 24, 48, and 72 hours postinfection (hpi). Ultrastructural analyses showed that all variants of SARS-CoV-2 altered the structure and function of mitochondria, nucleus, and rough endoplasmic reticulum of cells. Monolayers infected with the Delta variant showed the highest number of modified cells and the greatest statistically significant differences compared to those of other variants. Viral particles were observed in the cytosol and the cell membrane in 100 % of the cells at 48 hpi. Alpha showed the highest mean particle diameter (79 nm), and Gamma and Delta were the smallest (75 nm). Alpha and Gamma had the highest particle frequency per field at 48 hpi, while the same was observed for Zeta and Delta at 72 hpi and 24 hpi, respectively. The cycle threshold of viral RNA varied among the target protein, VOC, and time of infection. The findings presented here demonstrate that all four VOCs evaluated caused ultrastructural changes in Vero-E6 cells, which were more prominent when infection occured with the Delta variant.

5.
Mem Inst Oswaldo Cruz ; 118: e230069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851721

RESUMEN

BACKGROUND: There is interest in lingering non-specific symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, referred to as Long coronavirus disease 2019 (Long COVID-19). It remains unknown whether the risk of Long COVID-19 is associated with pre-existing comorbidities or initial COVID-19 severity, including infections due to new Omicron lineages which predominated in 2023. OBJECTIVES: The aim of this case report was to characterize the clinical features of acute XBB.1.5 infection followed by Long COVID-19. METHODS: We followed a 73-year old female resident of Rio de Janeiro with laboratory-confirmed SARS-CoV-2 during acute infection and subsequent months. The SARS-CoV-2 lineage was determined by genome sequencing. FINDINGS: The participant denied comorbidities and had completed a two-dose vaccination schedule followed by two booster doses eight months prior to SARS-CoV-2 infection. Primary infection by viral lineage XBB.1.5. was clinically mild, but the participant subsequently reported persistent fatigue. MAIN CONCLUSIONS: This case demonstrates that Long COVID-19 may develop even after mild disease due to SARS-CoV-2 in fully vaccinated and boosted individuals without comorbidities. Continued monitoring of new SARS-CoV-2 lineages and associated clinical outcomes is warranted. Measures to prevent infection should continue to be implemented including development of new vaccines and antivirals effective against novel variants.


Asunto(s)
COVID-19 , Femenino , Humanos , Anciano , COVID-19/complicaciones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Brasil , Mapeo Cromosómico
6.
J Infect Dis ; 228(12): 1680-1689, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37571849

RESUMEN

This was a household-based prospective cohort study conducted in Rio de Janeiro, in which people with laboratory-confirmed coronavirus disease 2019 (COVID-19) and their household contacts were followed from April 2020 through June 2022. Ninety-eight reinfections were identified, with 71 (72.5%) confirmed by genomic analyses and lineage definition in both infections. During the pre-Omicron period, 1 dose of any COVID-19 vaccine was associated with a reduced risk of reinfection, but during the Omicron period not even booster vaccines had this effect. Most reinfections were asymptomatic or milder in comparison with primary infections, a justification for continuing active surveillance to detect infections in vaccinated individuals. Our findings demonstrated that vaccination may not prevent infection or reinfection with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Therefore we highlight the need to continuously update the antigenic target of SARS CoV-2 vaccines and administer booster doses to the population regularly, a strategy well established in the development of vaccines for influenza immunization programs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Prospectivos , Reinfección/epidemiología , Vacunas contra la COVID-19 , Brasil/epidemiología
7.
Epidemiol Infect ; 151: e151, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37539522

RESUMEN

Laboratory-based case confirmation is an integral part of measles surveillance programmes; however, logistical constraints can delay response. Use of RDTs during initial patient contact could enhance surveillance by real-time case confirmation and accelerating public health response. Here, we evaluate performance of a novel measles IgM RDT and assess accuracy of visual interpretation using a representative collection of 125 sera from the Brazilian measles surveillance programme. RDT results were interpreted visually by a panel of six independent observers, the consensus of three observers and by relative reflectance measurements using an ESEQuant Reader. Compared to the Siemens anti-measles IgM EIA, sensitivity and specificity of the RDT were 94.9% (74/78, 87.4-98.6%) and 95.7% (45/47, 85.5-99.5%) for consensus visual results, and 93.6% (73/78, 85.7-97.9%) and 95.7% (45/47, 85.5-99.5%), for ESEQuant measurement, respectively. Observer agreement, determined by comparison between individuals and visual consensus results, and between individuals and ESEQuant measurements, achieved average kappa scores of 0.97 and 0.93 respectively. The RDT has the sensitivity and specificity required of a field-based test for measles diagnosis, and high kappa scores indicate this can be accomplished accurately by visual interpretation alone. Detailed studies are needed to establish its role within the global measles control programme.


Asunto(s)
Virus del Sarampión , Sarampión , Humanos , Brasil/epidemiología , Prueba de Diagnóstico Rápido , Reproducibilidad de los Resultados , Lectura , Inmunoglobulina M , Anticuerpos Antivirales , Sarampión/diagnóstico , Sarampión/epidemiología
8.
Front Cardiovasc Med ; 10: 1189320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351283

RESUMEN

The emergence of the rare syndrome called vaccine-induced immune thrombocytopenia and thrombosis (VITT) after adenoviral vector vaccines, including ChAdOx1 nCov-19, raises concern about one's predisposing risk factors. Here we report the case of a 56-year-old white man who developed VITT leading to death within 9 days of symptom onset. He presented with superior sagittal sinus thrombosis, right frontal intraparenchymal hematoma, frontoparietal subarachnoid and massive ventricular hemorrhage, and right lower extremity arterial and venous thrombosis. His laboratory results showed elevated D-dimer, C-reactive protein, tissue factor, P-selectin (CD62p), and positive anti-platelet factor 4. The patient's plasma promoted higher CD62p expression in healthy donors' platelets than the controls. Genetic investigation on coagulation, thrombophilia, inflammation, and type I interferon-related genes was performed. From rare variants in European or African genomic databases, 68 single-nucleotide polymorphisms (SNPs) in one allele and 11 in two alleles from common SNPs were found in the patient genome. This report highlights the possible relationship between VITT and genetic variants. Additional investigations regarding the genetic predisposition of VITT are needed.

9.
Viruses ; 15(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36992454

RESUMEN

Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Asunto(s)
COVID-19 , FN-kappa B , Humanos , FN-kappa B/metabolismo , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Síndrome Post Agudo de COVID-19 , COVID-19/metabolismo , Encéfalo , Barrera Hematoencefálica , Mitocondrias/metabolismo
10.
Influenza Other Respir Viruses ; 17(1): e13073, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36824313

RESUMEN

Background: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. Methods: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. Results: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. Conclusions: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets.


Asunto(s)
Virus Sincitial Respiratorio Humano , Virus , Estados Unidos , Humanos , Virus Sincitial Respiratorio Humano/genética , Laboratorios , Organización Mundial de la Salud , Australia
11.
Mem. Inst. Oswaldo Cruz ; 118: e230069, 2023. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1514606

RESUMEN

BACKGROUND There is interest in lingering non-specific symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, referred to as Long coronavirus disease 2019 (Long COVID-19). It remains unknown whether the risk of Long COVID-19 is associated with pre-existing comorbidities or initial COVID-19 severity, including infections due to new Omicron lineages which predominated in 2023. OBJECTIVES The aim of this case report was to characterize the clinical features of acute XBB.1.5 infection followed by Long COVID-19. METHODS We followed a 73-year old female resident of Rio de Janeiro with laboratory-confirmed SARS-CoV-2 during acute infection and subsequent months. The SARS-CoV-2 lineage was determined by genome sequencing. FINDINGS The participant denied comorbidities and had completed a two-dose vaccination schedule followed by two booster doses eight months prior to SARS-CoV-2 infection. Primary infection by viral lineage XBB.1.5. was clinically mild, but the participant subsequently reported persistent fatigue. MAIN CONCLUSIONS This case demonstrates that Long COVID-19 may develop even after mild disease due to SARS-CoV-2 in fully vaccinated and boosted individuals without comorbidities. Continued monitoring of new SARS-CoV-2 lineages and associated clinical outcomes is warranted. Measures to prevent infection should continue to be implemented including development of new vaccines and antivirals effective against novel variants.

12.
Viruses ; 14(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36016313

RESUMEN

Annual vaccination against influenza is the best tool to prevent deaths and hospitalizations. Regular updates of trivalent inactivated influenza vaccines (TIV) are necessary due to high mutation rates in influenza viruses. TIV effectiveness is affected by antigenic mismatches, age, previous immunity, and other host factors. Studying TIV effectiveness annually in different populations is critical. The serological responses to Southern-Hemisphere TIV and circulating influenza strains were evaluated in 2018−2020 among Brazilian volunteers, using hemagglutination inhibition (HI) assays. Post-vaccination titers were corrected to account for pre-vaccination titers. Our population achieved >83% post-vaccination seroprotection levels, whereas seroconversion rates ranged from 10% to 46%. TIV significantly enhanced antibody titers and seroprotection against all prior and contemporary vaccine and circulating strains tested. Strong cross-reactive responses were detected, especially between H1N1 subtypes. A/Singapore/INFIMH-16-0019/2016, included in the 2018 TIV, induced the poorest response. Significant titer and seroprotection reductions were observed 6 and 12 months after vaccination. Age had a slight effect on TIV response, whereas previous vaccination was associated with lower seroconversion rates and titers. Despite this, TIV induced high seroprotection for all strains, in all groups. Regular TIV evaluations, based on regional influenza strain circulation, should be conducted and the factors affecting response studied.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos Antivirales , Brasil/epidemiología , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Estaciones del Año , Vacunas de Productos Inactivados
13.
bioRxiv ; 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35734080

RESUMEN

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non-productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.

14.
Front Med (Lausanne) ; 9: 839389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308526

RESUMEN

The present study investigated a SARS-CoV-2 infection in placenta and fetal samples from an early pregnancy miscarriage in Midwest Brazil. The Gamma variant was isolated and fully sequenced from the placenta sample, but not from fetal samples. Our findings highlight potential adverse perinatal outcomes caused by SARS-CoV-2 Gamma infection during pregnancy.

15.
Viruses ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215794

RESUMEN

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Asunto(s)
Microscopía Electrónica de Transmisión/métodos , Microscopía Electrónica/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestructura , Animales , Línea Celular , Chlorocebus aethiops , SARS-CoV-2/química , Células Vero , Internalización del Virus , Replicación Viral
16.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35081335

RESUMEN

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

17.
BMJ Open ; 12(12): e067212, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36600372

RESUMEN

PURPOSE: To better understand the household transmission of SARS-COV-2 in a low-resource community in Rio de Janeiro during the COVID-19 pandemic (2020-2022). PARTICIPANTS: This is an open prospective cohort study of children ≤12 years old and their household contacts. During home visits over 24 months, we collected data on sociodemographic characteristics, behavioural data, clinical manifestations of SARS-CoV-2, vaccination status, SARS-CoV-2 (reverse transcription-polymerase chain reaction) RT-PCR and anti-S antibody tests. Among adults, the majority of participants were women (62%). FINDINGS TO DATE: We enrolled 845 families from May 2020 to May 2022. The median number of residents per household was four. The median household density, defined as the number of persons per room, was 0.95. The risk of SARS-CoV-2 occurrence was higher in households with a high number of persons per room. Children were not the principal source of SARS-CoV-2 infections in their households during the first wave of the pandemic. FUTURE PLANS: Future studies will investigate cellular and humoral immune responses to locally circulating SARS-CoV-2 variants, which is relevant for the design of vaccines, antivirals and monoclonal antibodies. We will also engage in outreach to encourage vaccination as a means of limiting the transmission of novel SARS-CoV-2 variants and other emerging pathogens.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , Femenino , Masculino , COVID-19/epidemiología , Estudios Prospectivos , Pandemias/prevención & control , Brasil/epidemiología , Anticuerpos
18.
Int J Infect Dis ; 114: 58-61, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34757006

RESUMEN

We describe a case of prolonged COVID-19 caused by the SARS-CoV-2 Gamma variant in a fully vaccinated healthcare worker, 387 days after an infection caused by lineage B.1.1.33. Infections were confirmed by whole-genome sequencing and corroborated by the detection of neutralizing antibodies in convalescent serum samples. Considering the permanent exposure of this healthcare worker to SARS-CoV-2, the waning immunity after the first infection, the low efficacy of the inactivated vaccine at preventing COVID-19, the immune escape of the Gamma variant (VOC), and the burden of post-COVID syndrome, this individual would have benefited from an additional dose of a heterologous vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil , COVID-19/complicaciones , COVID-19/terapia , Humanos , Inmunización Pasiva , Reinfección , Vacunas de Productos Inactivados , Sueroterapia para COVID-19 , Síndrome Post Agudo de COVID-19
19.
Cells ; 10(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34571855

RESUMEN

The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Inmunidad Celular , Modelos Biológicos , SARS-CoV-2/fisiología , Adulto , Células Epiteliales Alveolares/virología , COVID-19/sangre , COVID-19/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Memoria Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/virología , Masculino , Persona de Mediana Edad , Fenotipo , Linfocitos T/inmunología , Replicación Viral/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...